Search results for "transition metal oxides"

showing 4 items of 4 documents

Analysis of Transition Metal Oxides based Heterojunction Solar Cells with S-shaped J-V curves

2020

The use of transition metal oxides for the selective carrier contact in the crystalline silicon solar cells technology is rising to interest for the excellent optoelectrical properties of these materials whose implementation, however, can result in lousy performing cells due to an S-shaped electrical characteristic. In this paper, we fabricated solar cells showing S-shaped J-V curve and carried out an analysis of the reasons of such behavior using a model involving the series of a standard cell equivalent circuit with a Schottky junction in order to explain these atypical performances. A good matching between the experimental measurements and the adopted theoretical model was obtained. The …

Standard cellMaterials scienceheterojunctionbusiness.industry020209 energySchottky barrier020208 electrical & electronic engineeringHeterojunction02 engineering and technologySettore ING-INF/01 - ElettronicaPulsed laser depositions-shapeTransition metalSolar cells heterojunction transition metal oxides pulsed laser deposition s-shapesolar cells0202 electrical engineering electronic engineering information engineeringEquivalent circuitOptoelectronicsCrystalline silicontransition metal oxidesbusinesspulsed laser deposition
researchProduct

TRANSITION METAL OXIDES AS SELECTIVE CONTACTS FOR C-SI SOLAR CELLS

2021

transition metal oxides solar cell c-Si defects small polaron molybdenum oxide titanium oxide efficiency photovoltaicSettore ING-INF/01 - Elettronica
researchProduct

Emergent ultrafast phenomena in correlated oxides and heterostructures

2017

The possibility of investigating the dynamics of solids on timescales faster than the thermalization of the internal degrees of freedom has disclosed novel non-equilibrium phenomena that have no counterpart at equilibrium. Transition metal oxides (TMOs) provide an interesting playground in which the correlations among the charges in the metal $d$-orbitals give rise to a wealth of intriguing electronic and thermodynamic properties involving the spin, charge, lattice and orbital orders. Furthermore, the physical properties of TMOs can be engineered at the atomic level, thus providing the platform to investigate the transport phenomena on timescales of the order of the intrinsic decoherence ti…

coherent transportFOS: Physical sciences02 engineering and technologySettore FIS/03 - FISICA DELLA MATERIA01 natural sciencesCondensed Matter - Strongly Correlated ElectronsPhysics and Astronomy (all)electronic coherenceTransition metalAtomic and Molecular PhysicsLattice (order)0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)coherent transport; electronic coherence; heterostructures; photon harvesting; pump probe; transition metal oxides; ultrafast dynamics; Atomic and Molecular Physics and Optics; Mathematical Physics; Condensed Matter Physics; Physics and Astronomy (all)transition metal oxides010306 general physicsAnisotropyQuantumMathematical PhysicsPhysicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)Mott insulatorMaterials Science (cond-mat.mtrl-sci)Heterojunction021001 nanoscience & nanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and Opticsultrafast dynamicsThermalisationheterostructuresChemical physicsphoton harvestingpump probeand Optics0210 nano-technologyTransport phenomenacoherent transport; electronic coherence; heterostructures; photon harvesting; pump probe; transition metal oxides; ultrafast dynamics;
researchProduct

Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

2016

The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered,…

NanostructureDopamineOxidetransition metal dichalcogenides; transducers; beyond graphene; biosensors; two-dimensional materials; two-dimensional oxides; transition metal oxidesNanotechnologyReviewBiosensing Techniques02 engineering and technology010402 general chemistrylcsh:Chemical technology01 natural sciencesBiochemistryAnalytical Chemistrylaw.inventionchemistry.chemical_compoundlawtransducerslcsh:TP1-1185transition metal oxidesElectrical and Electronic Engineeringtwo-dimensional materialsInstrumentationMaterial synthesisChemistryGraphenetransition metal dichalcogenidesOxidesDNAKemi021001 nanoscience & nanotechnologyAscorbic acidbiosensorsAtomic and Molecular Physics and OpticsNanostructures0104 chemical sciencestwo-dimensional oxidesbeyond grapheneGlucoseChemical SciencesGraphiteDirect and indirect band gaps0210 nano-technologyBiosensor
researchProduct